Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Lokales Umfeldmodell für das Kooperative, Automatisierte Fahren in komplexen VerkehrsSituationen

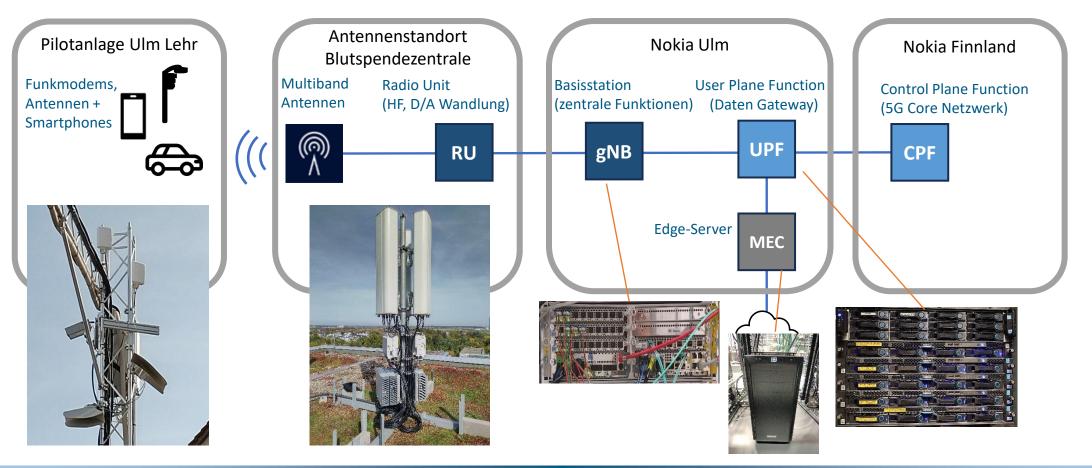
Das 5G Kommunikationsnetz im Testfeld Ulm

Steffen Schulz - Nokia Solutions and Network GmbH & Co. KG LUKAS Abschlusspräsentation, 21.09.2023, Ulm

Das 5G Kommunikationsnetz Motivation und Herausforderungen

Motivation

- Kommunikationsnetz durchgehend zur Verfügung
- ▶ im Endausbau reines 5G Standalone (SA) Netz, latenzoptimiert
- Konfiguration und Testen der Eigenschaft "Network Slicing"
- ► Endgeräte für Partner (Auswahl und Konfiguration)
- ► Edge-Server für zentrale Berechnungen

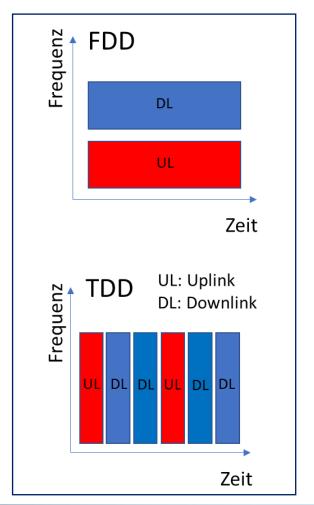

Herausforderungen

- ► Endgeräte-Verfügbarkeit für 5G SA
- ► Netzumbau im laufenden Betrieb inklusive Pilotanlage
- aktives Risikomanagement bezüglich verfügbarer Frequenzbänder und Infrastruktur

Das 5G Kommunikationsnetz Aufbau

Allgemeiner Aufbau und Realisierung im Testnetz in Ulm

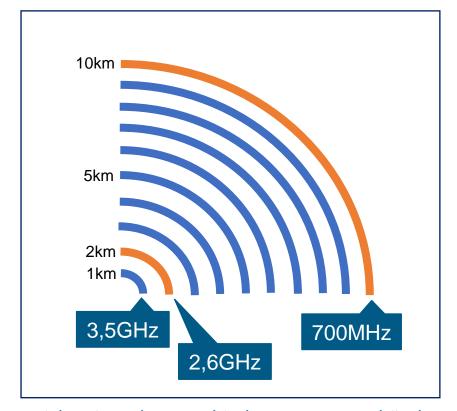
Das 5G Kommunikationsnetz Realisierung – Das Radio Access Network



- erfolgreiche Umstellung auf 5G Standalone im Sommer 2022
- ► durch Verlust der 700MHz Frequenz Anfang 2023 neue Herausforderungen:
 - ► Wechsel von 700MHz auf 2,6GHz
 - ► höhere Frequenz = geringere Reichweite
 - ► Wechsel vom FDD -> TDD Verfahren

FDD = Frequency Division Duplex (fixe Bandbreite für UL und DL)

TDD = Time Division Duplex (Verhältnis UL:DL kann unsymmetrisch sein)

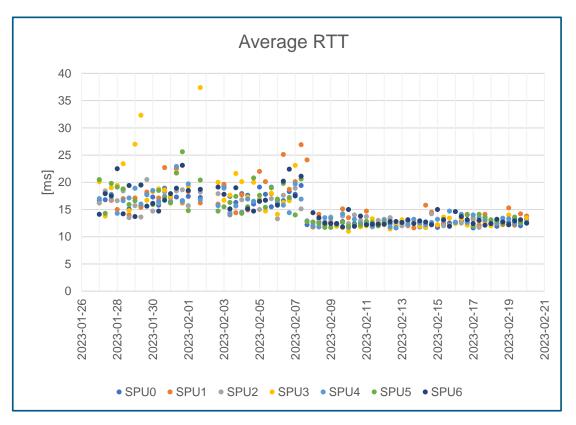

- ► Bandbreiteverhältnis (Uplink : Downlink)
 - ► 700MHz 1:1 (10+10 MHz)
 - ► 2,6GHz 3:7 (12+28 MHz)
- umfassende Neukonfiguration sowie Optimierung des Netzes notwendig!

Das 5G Kommunikationsnetz Optimierung - Reichweite

LUKAS

- nötig aufgrund Wechsel auf höheres Frequenzband (700MHz -> 2,6GHz)
- ► Lösung: RACH (Random Access Channel) Optimierung
- ► RACH dient Verbindungsaufnahme der Endgeräte im Netz
- ► Optimierung: Balance zwischen Reichweite und nötiger Ressourcen (Auswirkung auf Datenraten)

Reichweiten der verschiedenen Frequenzbänder


Das 5G Kommunikationsnetz Optimierung - Latenz

- ► Projektziel möglichst niedrige Latenz
- Nutzung Feature "Uplink Proactive Scheduling"
- ► Optimierung: Balance zwischen Latenz und Ressourcennutzung
- ► Messung Round Trip Time (RTT) von allen SPUs an Pilotanlage zum MEC-Server, mehrmals täglich
- ► Ergebnis mittlere RTT:

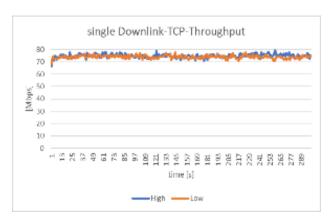
▶ vor Optimierung: 17-19 ms

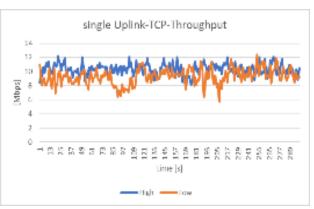
▶ nach Optimierung: 12-13 ms

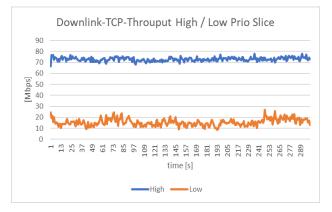
RTT aller SPUs mit den Messwerten mehrere Tage vor und nach der Umstellung

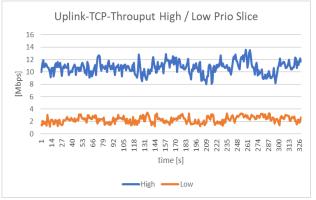
Das 5G Kommunikationsnetz Optimierung – Network Slicing (Priorität)

- Network Slicing bietet virtualisierte und unabhängige logische Netzwerke auf derselben physischen Netzwerkinfrastruktur
- ► Nutzer können einem oder mehreren Slices zugeordnet werden
- gewährleistet geforderte "Quality of Service"
- ► Konfiguration in LUKAS: Funkressourcen Zuteilung für Nutzer hoher und niedriger Priorität (2 Slices)


Quota	Hohe Priorität	Niedrige Priorität
max	100%	100%
min	70%	10%


Das 5G Kommunikationsnetz Optimierung - Network Slicing Ergebnisse


- Ergebnisse:
 Beispiel Datendurchsatz
- ▶ Tests mit 2 Endgeräten unterschiedlicher Priorität (= unterschiedliche Slices)
- gemessener Datendurchsatz im Downlink und Uplink bei gleichzeitigem Betrieb:


[Mbps]	Hohe Priorität	Niedrige Priorität
Downlink	73,0	15,5
Uplink	10,7	2,4

jeweils 1 Endgerät mit unterschiedlicher Slice Konfiguration sendet

beide Endgeräte mit unterschiedlicher Slice Konfiguration senden gleichzeitig

Das 5G Kommunikationsnetz Zusammenfassung

- ► für LUKAS stand ein vollausgebautes 5G Standalone Netzwerk zur Verfügung
- optimiert für automatisiertes Fahren (latenzoptimiert, Uplink optimiert)
- ► Vorteile des 5G Network Slicing konnten nachgewiesen werden
- ► Bereitstellung eines MEC-Servers mit direkter Anbindung ans Mobilfunknetz
- ► Auswahl, Test und Konfiguration der im Projekt benutzten Endgeräte
- ► durch pro-aktives Risikomanagement konnten die zum Teil massiven Umstellungen im Mobilfunknetz nahezu transparent für die Projektpartner durchgeführt werden

Das 5G Kommunikationsnetz

Vielen Dank für Ihr Interesse... ... haben Sie Fragen?

Weitere Details zudem in der Poster-Session ab 14:15 Uhr LUKAS Abschlusspräsentation, 21.09.2023, Ulm

Steffen Schulz - Nokia Solutions and Networks GmbH & Co. KG Kontakt: steffen.schulz@nokia.com